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Abstract

Delay in the assessment of tumor response to radio-
therapy continues to pose a major challenge to quality
of life for patients with nonresponsive tumors. Here, we
exploited label-free Raman spectroscopic mapping to eluci-
date radiation-induced biomolecular changes in tumors and
uncovered latent microenvironmental differences between
treatment-resistant and -sensitive tumors. We used isogenic
radiation-resistant and -sensitive A549 human lung cancer
cells and human head and neck squamous cell carcinoma
(HNSCC) cell lines (UM-SCC-47 and UM-SCC-22B, respec-
tively) to grow tumor xenografts in athymic nude mice and
demonstrated the molecular specificity and quantitative
nature of Raman spectroscopic tissue assessments. Raman
spectra obtained from untreated and treated tumors were
subjected to chemometric analysis using multivariate curve
resolution-alternating least squares (MCR-ALS) and support
vectormachine (SVM) to quantify biomolecular differences in

the tumor microenvironment. The Raman measurements
revealed significant and reliable differences in lipid and col-
lagen content postradiation in the tumor microenvironment,
with consistently greater changes observed in the radiation-
sensitive tumors. In addition to accurately evaluating tumor
response to therapy, the combination of Raman spectral
markers potentially offers a route to predicting response in
untreated tumors prior to commencing treatment. Combined
with its noninvasive nature, our findings provide a rationale
for in vivo studies using Raman spectroscopy, with the ultimate
goal of clinical translation for patient stratification andguiding
adaptation of radiotherapy during the course of treatment.

Significance: These findings highlight the sensitivity of
label-free Raman spectroscopy to changes induced by radio-
therapy and indicate the potential to predict radiation resis-
tance prior to commencing therapy.

Introduction
Radiation in conjunction with chemotherapy or other targeted

therapies is used to treat the majority of patients with lung and
head and neck cancer. The overall radiation dose is fractionated
and delivered over a period of 5–7weeks (2 Gy/day, 5 days/week)
because dose fractionation is believed to improve tumor oxygen-

ation and, hence, overall cell kill (1, 2). An outstanding challenge
inoptimizing the efficacy of such treatment resides in determining
the degree of radiosensitivity associated with a specific patient's
disease and the extent of tumor response to radiation. There are
no accepted methods to determine treatment response either
before or during the early stages of therapy. Although human
papillomavirus (HPV)-negative head and neck squamous cell
carcinomas (HNSCCs) are associated with significantly worse
outcomes compared with HPV-positive tumors (3, 4), HPV status
is not used to guide treatment of HNSCC. Currently, X-ray CT or
MRI is used to determine tumor shrinkage about 2–3 weeks after
completion of therapy. Positron emission tomography (PET) of
fluorodeoxyglucose (FDG) uptake to measure functional tumor
response is recommended about 8–12 weeks after completion of
therapy to avoid false positives. Hence, patients who undergo the
full treatment regimen and are later identified as nonresponders
are exposed to the toxic side effects of ineffective therapy for
the full duration of the treatment regimen. Identifying patients
with radiation-resistant tumors, prior to commencing treatment
or immediately after, would significantly improve treatment
response rates and help nonresponding patients avoid the toxic
side effects of ineffective radiotherapy.

Seeking to address this unmet need, molecular alterations in
the tumor microenvironment in response to radiotherapy have
been studied from multiple points of view including tumor
hypoxia (5–7), cell repopulation (8–10), and genetic mutations
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involved in DNA repair pathways (11). However, elucidation
of serum and/or imaging biomarkers for accurate patient strati-
fication and continuous assessment of therapy response, and their
translation to the clinic has proven to be challenging. In an
effort to develop better phenotypic strategies that could aid the
clinical practice of radiation oncology, we propose an entirely
complementary optical tool to the existing imaging arsenal fea-
turing Raman scattering to noninvasively quantify the putative
differences in the molecular milieu of radiosensitive and radio-
resistant tumors.

Raman spectroscopy offers a nonionizing, label-free, and high-
ly specific technique for molecular characterization of the tumor
and its microenvironment (12, 13). It relies on the inelastic
scattering of light, arising from its interactions with the biological
specimen, to quantify the unique vibrational modes ofmolecules
within its native context (14). Raman spectroscopy offers the
ability to probe biomolecular changes both in vivo and ex vivo, and
interrogate complex molecular heterogeneity directly from cells
and tissues (15). Recent studies by us and others have harnessed
vibrational profiles for objective recognition of epithelial and
stromal changes in cancers (16–22). Emerging data suggest the
presence of postradiation alterations in Raman spectral features
and biomolecular differences between cell lines of varying
radiosensitivity (23, 24). Krishna and colleagues showed that
radiation-induced changes in Raman spectra could be used to
differentiate treatment responders and nonresponders in excised
cervical cancers; however, pretreatment Raman spectra were inca-
pable of identifying radiation response (25). Furthermore, a
recent Raman spectroscopic study on ex vivo tumor xenografts by
Jirasek and coworkers identified elevated levels of glycogen in
tumors exposed to a single, high radiation dose of 15 Gy (26).
While these reports underscore the promise of Raman spectros-
copy in detecting radiation-induced changes, thesemeasurements
were performed on cells or tumor xenografts following a single
radiation dose. More systematic studies that examine the sensi-
tivity of Raman spectroscopy to changes in the tumor microen-
vironment when subjected to fractionated, clinically relevant
radiation doses have been lacking. Such measurements would
provide a better understanding ofmolecularmodifications result-
ing from fractionated dosing and, ultimately, facilitate a person-
alized treatment approach. In addition, spectral markers of
intrinsic radiation resistance that can be identified in tumors even
before commencing therapy could provide a paradigm shift in
determining treatment regimen.

The goal of our study was to leverage Raman spectroscopy to
investigate biomolecular changes within tumor xenografts in
response to fractionated radiotherapy, and to determine the
feasibility of differentiating treatment response from failure. In
addition, we sought to determine whether classifier models
based on Raman spectral markers could be used to distinguish
between untreated radiation-resistant and sensitive tumors. To
accomplish our goals, we used two sets of radiation-sensitive and
radiation-resistant cell lines. First, we employed a recently devel-
oped matched model of radiation resistance (27), wherein a
radiation-resistant clonal population of cells (rA549) was gener-
ated from parental A549 lung cancer cells. Second, we used
HNSCC cell lines, UM-SCC-22B (UM22) and UM-SCC-47
(UM47), for which radiation resistance and sensitivity have been
established in previous studies (28). Raman spectroscopic map-
ping of excised tumor xenografts (control and radiated tumors)
grown from all four cell lines revealed consistent compositional

alterations based on tumor type and in response to a radiation
dose of only 2Gy. Usingmultivariate curve resolution-alternating
least squares (MCR-ALS), we translated the spectral information
to uncover changes in lipid, collagen, and glycogen content. Data
from both lung and head and neck (henceforth referred to as HN)
tumors show consistently higher changes in lipid and collagen
content in radiation-sensitive tumors that were treated with
radiation compared with their radiation-resistant counterparts.
Definition of the tumor phenotypes in terms of quantitative
spectral features corresponding to key biomolecules also enabled
the development of classifier models that exhibit high accuracy in
discriminating between radiation-resistant and sensitive tumors.
Furthermore, our use of an isogenic radiation-resistant clone
allowed, to the best of our knowledge, the first determination of
discriminative Raman features in untreated tumors thereby offer-
ing fresh insights into specificmolecular roles underlying intrinsic
radiation resistance. Taken together, our findings highlight the
potential of Raman spectroscopic imaging as a label-free, non-
ionizing tool whose in vivo translation would permit monitoring
of therapeutic effects with finer temporal resolution than is
possible at the present time and potentially enable stratification
of radiation-resistant patient cohorts.

Materials and Methods
Cell culture

Human lung carcinoma A549 cells were purchased from ATCC
(CCL185) and were authenticated using short tandem repeat
(STR) profiling. A549 cells were grown in Ham F-12K (Kaighn)
Medium mixed with 10% (v/v) FBS and 1% (v/v) penicillin–
streptomycin. These cells were irradiated at an average dose of
2.2 Gy every three days using an orthovoltage X-ray irradiator
(CP-160, Faxitron X-Ray Corp.) for a cumulative dose of 55 Gy
(25 fractions) to create the radiation-resistant cell clones (rA549;
ref. 27). UM-SCC-22B and UM-SCC-47 were purchased from
EMD Millipore and cultured in a mixture of DMEM, 10% FBS,
1% penicillin-streptomycin, 1% nonessential amino acids
(NEAA), and 1% L-Glutamine. All cell lines used in this study
tested negative forMycoplasma and were authenticated using STR
profiling.

Fractionated therapy of tumor xenografts
A schematic representation of this study design is presented

in Fig. 1A. All animal studies were approved by the Institutional
Animal Care and Use Committee at the University of Arkansas
(Fayetteville, AR; protocols 16022 and 18061). Athymic nu/nu
mice were injected with a subcutaneous bolus of cells suspended
in 100 mL of serum and media-free saline (1 � 107 for A549 and
rA549 cells, 2 � 106 for UM-SCC-22B and UM-SCC-47) to grow
tumor xenografts. Once tumor volume reached 200 mm3, mice
were randomized to either radiation (XT) or control (NT) groups,
as presented in Table 1. Fractionated radiotherapy was adminis-
tered using an X-RAD 320 biological irradiator (Precision X-Ray)
as four 2-Gy fractions delivered over two consecutive weeks (total
dose of 8 Gy), as described by others (28). All animals completed
the treatment. Tumor volumes were monitored using Vernier
calipers, and tumors were excised when the majority of untreated
control tumors had reached 1,500 mm3 (�35–50 days after
treatment commenced). Tumor volume was calculated according
to the equation V ¼ (p/6) � (length) � (width) � (height). A
comparison of tumor xenograft volumes is presented in
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Supplementary Fig. SF1. After excision, tumors were embedded in
optimal cutting temperature mounting medium, snap-frozen,
and stored at �80�C.

Raman spectroscopy
The frozen tumors were thawed and fixed in 10% neutral-

buffered formalin prior to making Raman measurements. The
fixed tumors were rinsed in PBS and sandwiched between a
quartz coverslip and aluminum block to maintain a constant
distance between the tissue and probe. The flattened tumors were
scanned using a fiber-optic probe–based portable Raman spec-
troscopy system (16, 29). Briefly, the custom-built system
consists of an 830 nm diode laser (500 mW maximum power,
Process Instruments) as the excitation source, and a combination
of a spectrograph (Holospec f/1.8i, Kaiser Optical Systems) and
a thermoelectrically (TE)-cooled CCD camera (PIXIS 400BR,
Princeton Instruments) for recording spectra. Laser delivery and
collection of back-scattered light was achieved via a lensed fiber-
optic bundled Raman probe (probe diameter: 2 mm; Emvision
LLC) with an estimated tissue sampling volume of 1 mm3. The
laser power at the tumor samples was maintained at approxi-
mately 20 mW in this study. Acquisition time for each spectrum

was 10 seconds (10 accumulations of 1 second each to prevent
saturation of CCD). Tissue dehydration due to laser exposure was
prevented by intermittent addition of PBS. Raster scanning of
the probe using motorized translation stages (T-LS13M, Zaber
Technologies Inc., travel range: 13 mm) and spectral acquisition
were performed on each side of theflattened tumors (�100mm2)
using a LabVIEW interface. About 4,100 and 7,000 spectra were
acquired from the 19 lung and 32 HN tumor xenografts,
respectively.

Data analysis
Figure 1B illustrates the data analysis workflow in this study. All

the data analysis in this study was carried out using scripts written
in MATLAB 2017a (Mathworks) environment unless otherwise
stated. The wavenumber axis of the Raman system was calibrated
using 4-acetamidophenol. The fingerprint wavenumber region
(600–1,800 cm�1) was chosen for further analysis. The Raman
spectra recorded from the tumors were subjected to a fifth-order
best-fit polynomial-based fluorescence removal and cosmic ray
removal using median filtering. The spectra were then vector
normalized (such that their Euclidean norm is set to unity) to
minimize the effects of potential variations in laser power at

Figure 1.

Raman spectroscopic study of radiation response and resistance. Overview of the experimental (A) and data analysis workflow (B) for Raman spectroscopic
mapping in lung and head and neck tumor xenografts, of differential intrinsic radioresistance, subjected to radiotherapy. Details of the individual steps are
provided in Materials and Methods.

Table 1. Cell lines used to generate tumor xenografts in the study

Lung tumors Head and neck tumors
Tumor group Class label Number of tumors Tumor group Class label Number of tumors

A549-NT A549-NT 5 UM-SCC-22B-NT UM22-NT 6
A549-XT A549-XT 4 UM-SCC-22B-XT UM22-XT 7
rA549-NT rA549-NT 5 UM-SCC-47-NT UM47-NT 9
rA549-XT rA549-XT 5 UM-SCC-47-XT UM47-XT 10
Total number of tumors 19 Total number of tumors 32
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the sample. The normalized spectra were used without any
spatial averaging in the analysis. Multivariate curve resolution-
alternating least squares (MCR-ALS) was employed to recover the
pure spectral profiles of the chemical constituents of the tissue
specimen without a priori information of the composition of
the specimen (30). The decomposition is achieved through an
iterative optimization routine under nonnegativity constraint on
pure spectral (loadings) and concentration (scores) matrices. The
nonnegativity constraints enable us to interpret the unresolved
specimen spectra in the form of loadings that represent spectra of
pure (or enriched) biochemical components and the correspond-
ing scores that provide a measure of abundance of the particular
component. In addition, spectral equal length constraint is
imposed on the pure spectra to facilitate comparison of corre-
sponding scores across the classes (treatment groups). The nor-
malized scores corresponding to each key biological constituent
were compared across different classes through box and whisker
plots with conventional thresholds. The spatial heterogeneity in
the score maps of major biological constituents for each tumor
was quantified in terms of distributional homogeneity index
(DHI), as defined elsewhere in the literature (31). The significance
of differences in medians of constituent scores across studied
classes were assessed on the basis of two-sided Wilcoxon rank-
sum test statistics. A conventional criterion of P value less than
0.05 was used to consider the medians different. The differences
between the groups were quantified in terms of effect size calcu-
lated using the Wendt formula for rank biserial correlation (32).

Support vector machine (SVM) was used to develop a decision
algorithm to identify radiation treatment response and to predict
resistant phenotype prior to treatment. SVM is a nonlinear clas-
sification method wherein classification is achieved by solving a
constrained quadratic optimization problem to obtain separating
boundariesbetween theclasses inhigherdimensional spaces (33).
In this study, the LIBSVM library (34) was used to develop a
C-SVM classifier. The background-corrected spectra were used
along with tumor group labels for each group studied, without
any spatial averaging. A radial basis function kernel with a
Gaussian envelope was employed to enable nonlinear mapping
of the input feature space, and the optimal C-SVM parameters
(i.e., cost and kernel parameter gamma) were selected using a
k-fold cross validation–based grid search algorithm. A leave-one-
mouse-out analysis was conducted in which spatially distinct
spectra belonging to each mouse were eliminated from the
training dataset and the resulting binary SVM classifiers for pairs
of classes of interest were tested using the spectra belonging to the
left-out mouse. Each mouse specimen was assigned an overall
predicted class label ifmore than 90%of its spectrawere predicted
as belonging to that class; otherwise, the specimen was labeled as
unclassified if the desired confidence level was not achieved.
Randomized class equalization was performed iteratively prior
to implementing SVM classification to avoid skewing the model
due to varying class sizes.

Histopathology
The tumors were stored in 70% ethanol after acquisition of

Raman spectra and submitted to the Phenotyping and Pathology
Core at JohnsHopkinsMedical Institutions (Baltimore,MD). The
formalin-fixed tumors were embedded in paraffin and sectioned
serially onto glass slides for histology. Hematoxylin and eosin
(H&E) staining, Masson trichrome staining for collagen and
Periodic acid Schiff (PAS) staining (without hematoxylin coun-

terstain) for glycogen were performed by the Core according to
standard protocols. The stained slides were imaged using a
Leica DMi8 inverted optical microscope. In addition, Oil Red
O staining for lipids was performed on frozen tumor sections
according to standard IHC protocols and imaged using a Nikon
fluorescence microscope.

Results
To capture the tumor heterogeneity and variance arising from

differential response to treatment, lung and HN tumors in each
group–radiation-treated (XT) and controls (NT), were mapped to
obtain spatially distinct Raman spectra from each specimen
(Fig. 2A). Each map had an average of 218 spectra (ranging
between 50 and 334 spectra depending on the size of the tumor).
Except for this visualization (Fig. 2A), the spectra collected
from each tumor specimen were treated individually without
any spatial averaging in all analyses. The spectra across all
the classes show prominent peaks at 1,045 cm�1 (glycogen),
1,256 cm�1 (glycogen), 1,301 cm�1 (CH vibration in lipids),
1,448 cm�1 (CH2 bending modes in lipids and collagen), and
1,656 cm�1 (amide-I feature of proteins with potential contribu-
tion from C ¼ C stretching in lipids). To discern possible molec-
ular differences, the spectral datasets were decomposed into key
compositional biomolecular signatures that were compared
across the different groups.

To achieve this decomposition, we performedMCR-ALS with 7
components to obtain a loadings matrix containing the "pure
component" basis spectra and a scores matrix containing the
weights of each of the seven components for all the spectra in
the dataset. Figures 2B and C illustrate the relevant MCR loadings
that present Raman features corresponding to key tissue consti-
tuents in the lung and HN tumor cohorts, respectively. The
remaining loadings, which do not show direct correspondence
to the vibrational signature of a prominent molecular constituent
or stem from the presence of formalin (spectral contaminant in
the tissue specimen), are provided in the Supporting Information
Supplementary Fig. SF2. As seen in Fig. 2B, spectrum B1 shows
prominent peaks at 1,078 cm�1, 1,266 cm�1, 1,301 cm�1,
1,442 cm�1, and 1,654 cm�1 that are characteristic of lipids,
specifically triglycerides. Spectral pattern B2 resembles the Raman
spectral profile of glycogen with peaks at 708 cm�1, 940 cm�1,
1,044 cm�1, 1,078 cm�1 and 1,256 cm�1. Furthermore, B3 has
spectral features corresponding to nucleic acids at 790 cm�1,
812 cm�1, and 1,082 cm�1, while loading B4 has peaks at
851 cm�1, 928 cm�1, 1,040 cm�1, 1,251 cm�1, 1,315 cm�1,
1,453 cm�1, and 1,661 cm�1, which are characteristic of collagen.
The loadings derived from the HN tumor dataset C1, C2, and C3
presented features similar to the loadings B1, B3, and B4, respec-
tively. The detailed peak allocations of all the features of the 7
loadings derived from lung and HN tumor datasets have been
tabulated in Supplementary Tables TS1 and TS2 (Supporting
Information), respectively. It is worth noting that the MCR
decomposition of HN tumors did not reveal a glycogen-rich
loading. The minor spectral features that stem from the use of
formalin as a fixative, at 1,490 cm�1 and 1,040 cm�1, present
themselves in a single MCR loading, thus indicating that the
effects of formalin fixation may be digitally removed (35).

Representative MCR score maps (abundance maps) of the
observed relevant loadings across the treatment groups have been
provided in Supporting Information (Supplementary Fig. SF3).
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To characterize the spatial heterogeneity in biochemical compo-
sition of the studied tumors, we measured the distributional
homogeneity index (DHI) for each MCR score map. DHI is a
measure of deviation of the spatial distribution in compositional
maps from their randomized counterparts (31). Thus, DHI is
positively correlated with heterogeneity in abundancemaps, with
a value of one representing homogeneous (or randomized)
distribution and higher values indicative of localization of
constituents. Therefore, from the observed large values of DHI
(Supplementary Fig. SF3), it is evident that the abundance maps
for relevant loadings obtained for lung and HN tumors exhibit
substantial spatial heterogeneity in the tumor samples.

The primary objectives of our study were to investigate differ-
ences in radiation-inducedmicroenvironmental changes between
resistant and sensitive tumors, and whether such molecular
alterations were consistent in tumors derived from two different
sites–lung and HN. Accordingly, NT versus XT comparisons for
each of the 4 cell lines were performed to evaluate the differential
response of sensitive (A549, UM-SCC-22B) and resistant (rA549,
UM-SCC-47) tumors. A secondary objective was to determine
whether these molecular features could distinguish between
untreated resistant and sensitive tumors. Because the HN tumors
stemmed from different cell lines, this specific comparison was
only performed in the lung cohort (A549-NT vs. rA549-NT) to
identify intrinsic differences underlying radiation resistance.
Here, we used density scatter plots as they allow better visuali-

zation of large datasets by avoiding overlap in regions of high
density. Figures 3A–C present three-dimensional (3D) density
plots using the normalized MCR-ALS scores corresponding to the
lipid-rich, glycogen-rich, and collagen-rich loadings of A549 and
rA549 tumors. Similarly, two-dimensional (2D) density plots
with only lipid-rich and collagen-rich loadings are shown
in Fig. 3D and E for the HN tumors. Both sets of density plots
underscore expected tumor heterogeneity and critically, the pres-
ence of group-specific local spectral clustering, which is reflected
in the higher density of colocated points (circled in the figure).

To quantitatively study the differences across the treatment
groups, we compared the normalized MCR-ALS scores of lipid-
rich, collagen-rich, and glycogen-rich loadings. We observed an
increase in lipid, collagen, and glycogen levels for both sensitive
(Fig. 4A) and resistant (Fig. 4B) lung tumors that were treated
with radiation, with a much larger increase in the lipid-rich
and collagen-rich signatures in the radiation-sensitive tumors. To
examine intrinsic radioresistance, we also compared the scores of
these biomolecular components between untreated A549 and
rA549 tumors (Fig. 4C). TheMCR-ALS scores point to higher lipid
and collagen content, but lower glycogen content in the resistant
tumors compared with the sensitive tumors. Furthermore, we
observed very similar effects in the HN tumors with a greater
increase in lipid and collagen levels in the radiation-sensitive
UM-SCC-22B (Fig. 4D) compared with the radiation-resistant
UM-SCC-47 tumors (Fig. 4E). Glycogen, as mentioned

Radiation-sensitive tumors

Radiation-resistant tumors

UM22-XT

A B

C

UM22-NT

A549-XT

A549-NT

UM47-XT

UM47-NT

rA549-XT

rA549-NT

800 1,000 1,200 1,400

Raman shift (cm-1)

1,600600 800 1,000

1,
07

8

1,
26

6

1,
30

2

1,
44

2

1,
07

8

80
9

79
3

85
1 93

2 1,
03

8

1,
24

5

1,
07

8

1,
26

6
1,

30
1

1,
44

2

1,
07

8
1,

08
2

85
1

92
8 1,

04
0

1,
25

1 1,
31

5

1,
45

3

1,
66

1

1,
04

4

94
0

85
4

81
2

79
0

1,
45

4

1,
66

8

C3

C2

C1

B1

B2

B3

B4

1,200 1,400

Raman shift (cm-1)

1,600600

800 1,000 1,200 1,400
Raman shift (cm-1)

Head and neck tumors

Lung tumors

1,600600

Figure 2.

Raman spectra of radiation-
resistant and -sensitive tumors.
A,Mean Raman spectra (with the
shadow representing 1 SD)
acquired from lung tumors derived
from parental A549 and radiation-
resistant (rA549) cells and head
and neck tumors derived from
radiation-sensitive UM-SCC-22B
and radiation-resistant UM-SCC-47
cells. Each of the types were either
exposed to fractionated radiation
(XT) or sham radiation (NT). B,
A subset of relevant MCR-loading
vectors derived from the spectra of
lung tumors belonging to all the
four study classes. The spectra B1
through B4 represent lipid-rich,
glycogen-rich, nucleic acid–rich,
and collagen-rich loadings,
respectively. C, A subset of relevant
MCR-loading vectors derived from
the spectra of tumors belonging to
head and neck tumor dataset. The
spectra C1 through C3 represent
lipid-rich, nucleic acid–rich, and
collagen-rich loadings,
respectively.
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previously, was not observed as a significant feature in the HN
tumors. Notably, the greater changes in sensitive tumors post-
radiation are also borne out by the effect sizes for lipid and
collagen content, which are consistently higher for the sensitive
tumor cohorts (� 0.35 in A549 and UM-SCC-22B; � 0.16 in
rA549 and UM-SCC-47).

While the comparison of MCR scores provides a starting point
for delineating the molecular mediators of treatment response/
resistance and assessing the predictive power of the spectroscopic
data, comparison of the individual component scores alone may
not provide a robust diagnostic framework, especially to classify
prospective samples. Therefore, we developed decision models
based on SVMs, a supervised classification method that can deal
with ill-posed problems and lead to unique global models (33).
We conducted a leave-one-mouse-out analysis, which involved
training three separate binary SVM classifiers for each tumor

type (lung and HN tumors), corresponding to the three sets of
comparisons–RS-NT vs. RS-XT, RR-NT vs. RR-XT, and RS-NT vs.
RR-NT, respectively. RS and RR indicate radiation-sensitive
and radiation-resistant tumor xenografts, respectively. Table 2
shows the aggregatednumber ofmice accurately classified, unclas-
sified, and misclassified (as determined by the criteria detailed
in the Methods section) for each of the three comparisons
(the tumor model–specific decomposition is provided in Sup-
porting Information; Supplementary Tables TS3 and TS4.) The
leave-one-mouse-out protocol provides satisfactory predictions
in all cases with an overall misclassification rate of only approx-
imately 3%. While slightly higher unclassification rates were
noted for the lung tumor dataset, incorporation of a larger cohort
of animals in the HN tumor data allowed significant reduction in
the same. In the latter set of HN tumors, slightly increased
unclassification rate (albeit with zero misclassification) was
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Figure 3.

Qualitative visualization of MCR-ALS scores of Raman spectra. A–C, Three-dimensional density plots showing the distribution of normalized scores of lipid-rich,
collagen-rich, and glycogen-rich MCR-ALS loadings showing radiation-induced differences in sensitive lung tumors (A549-NT vs. A549-XT), radiation-induced
differences in resistant lung tumors (rA549-NT vs. rA549-XT), and preradiation differences between sensitive and resistant lung tumors (A549-NT vs. rA549-
NT), respectively.D and E, Two-dimensional density plots showing the distribution of normalized scores of lipid-rich and collagen-rich MCR-ALS loadings
showing radiation-induced differences in sensitive head and neck tumors (UM22-NT vs. UM22-XT) and radiation-induced differences in resistant head and neck
tumors (UM47-NT vs. UM47-XT), respectively. The class-specific clustering in high-density regions are circled.
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observed for the comparison between treated (UM47-XT) and
untreated (UM47-NT) radiation-resistant HN tumors. We attri-
bute this increased unclassification to smaller effect size observed
in MCR-ALS–based univariate comparisons and the high classi-
fication threshold used in our leave-one-mouse-out analysis. For
example, relaxing the threshold to 80% level reduced the unclas-
sification rates of comparison between UM47-NT and UM47-XT
significantly (2/19 mice compared with 7/19 mice at 90% level).

Finally, to verify the lack of spurious correlations in the data-
set (36), we repeated our leave-one-mouse-out analysis using the

same spectral dataset, but with randomly assigned class labels
instead of their original labels for each comparison. Average
correct classification rate of approximately 57% for both lung
tumor and HN tumor datasets, were obtained (comparable with
the random likelihood of selection of the true class label–50%).
Taken together, the results of the SVM-derived classifier model
studies demonstrate the utility of the Raman spectroscopic data in
capturing distinct radiobiological responses in radiosensitive and
radioresistant lung and HN tumor xenografts.

Discussion
A fundamental principle of personalized medicine is to design

treatment strategies that tackle the biological heterogeneity char-
acteristic of cancer to achieve maximal tumor control while
minimizing toxicity. The lack of suitable imaging tools, which
can identify patients unlikely to benefit from radiation and
perform frequent responsemonitoring to better inform treatment
doses and fractionation schemes, remains a major impediment
in customizing radiotherapy. In contrast to existing clinical
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Figure 4.

Quantitative MCR-ALS analysis of Raman spectra. A–C, Boxplots of normalized scores of lipid-rich, collagen-rich, and glycogen-rich MCR-ALS loadings showing
radiation-induced differences in sensitive lung tumors (A549-NT vs. A549-XT), radiation-induced differences in resistant lung tumors (rA549-NT vs. rA549-XT),
and preradiation differences between sensitive and resistant lung tumors (A549-NT vs. rA549-NT), respectively. The differences in the scores of lipid and
glycogen loadings are statistically significant (indicated by � and n.s., nonsignificant, otherwise) at P < 0.001 level (Wilcoxon rank sum test) for each of the
three comparisons (A–C), whereas the differences in the scores of collagen loadings are statistically significant only for the comparisons inA and C.D and E,
Boxplots of normalized scores of lipid-rich and collagen-rich MCR-ALS loadings showing radiation-induced differences in sensitive head and neck tumors
(UM22-NT vs. UM22-XT) and radiation-induced differences in resistant head and neck tumors (UM47-NT vs. UM47-XT), respectively. The differences in the scores
of lipid and collagen loadings are statistically significant (indicated by �) at P < 0.001 level (Wilcoxon rank sum test) for both the comparisons. The effect size (r),
characterizing magnitude of differences between groups, is provided for each comparison.

Table 2. Results of binary leave-one-mouse-out SVM analyses

Number of mice classified accurately,
unclassified and misclassified

RS-NT RS-XT RR-NT RR-XT

Binary SVM comparisons
RS-NT vs. RS-XT (11þ0þ0)/11 (8þ2þ1)/11 – –

RR-NT vs. RR-XT – – (9þ5þ0)/14 (12þ2þ1)/15
RS-NT vs. RR-NT (10þ1þ0)/11 – (12þ2þ0)/14 –

RS-XT vs. RR-XT – (10þ0þ1)/11 – (14þ1þ0)/15
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technologies, optical spectroscopy offers a noninvasive or min-
imally invasive route to providing real-time evaluation of treat-
ment response based on functional and biomolecular changes in
the tumor microenvironment. In this study, we demonstrate the
utility of using label-free Raman spectroscopy in conjunction
with chemometric analysis to reveal distinct biomolecular
changes in radiation-resistant and sensitive tumors when sub-
jected to fractionated, clinically relevant radiation doses. Specif-
ically, MCR-ALS analysis reveals consistent differences in lipid
and collagen content postradiation in the microenvironment
of lung and head and neck tumor xenografts with especially
pronounced changes in the radiation-sensitive cases. By leverag-
ing SVM-derived classifiers, we are also able to differentiate
between vibrational signatures recorded from untreated radia-
tion-sensitive and radiation-resistant tumors, indicating the
potential for future Raman spectroscopic application to not only
monitor but also predict radiation response in individuals.

The specific biomolecular features derived using MCR-ALS
analysis have been previously studied in the context of cellular
response to radiation. Hypoxia and its transcription factor, hyp-
oxia-inducible factor (HIF-1), have been shown to promote
extracellular matrix (ECM) remodeling and play an important
role in promoting fibrosis (37, 38) and collagen biogene-
sis (39, 40). Indeed, our recent investigation of cellular metab-
olism showed a significant increase in HIF-1a expression after
radiation in both the A549 and rA549 cells (41). We reason that
the radiation-induced increase inHIF-1 content is, in part, respon-
sible for promoting collagen deposition in the A549 and rA549
tumors. The increased collagen content may also be explained by

the actions of growth factors, such as TGFb, which are recruited in
response to HIF-1a–stimulated macrophage accumulation (42).
Overexpression of TGFb serves as a chemoattractant for the
recruitment of fibroblasts, and may drive the increase in colla-
gen-rich MCR scores upon irradiation for both sensitive and
resistant tumors (43).

Previouswork has established that de novo lipogenesis protects
cancer cells from external insults, such as oxidative stress, and that
inhibition of lipogenesis increases oxidative stress–induced cell
death (44). The increased lipid content observed inboth groups of
radiated tumors in our study could be attributed to such a cellular
defense mechanism in response to radiation-induced oxidative
stress. Although the exact mechanism for increased lipid content
needs further investigation, studies have found elevated levels
of fatty acid synthase (FASN) in radiation-resistant HN cancer
cells (45). Furthermore, inhibition of FASN decreased cellular
survival of these radiation-resistant cancer cells. FASN is a key
player in lipogenesis and has also been shown to be a prognostic
indicator of radiation resistance in clinical nasopharyngeal
carcinoma (46). Taken together, these studies highlight the poten-
tial of lipids to serve as a powerful biomarker of radiation
resistance.

Our findings of increased glycogen content in response to
radiation in the radiation-resistant rA549 tumors are consistent
with a recent in vitro study by Matthews and colleagues
that reported an increase in radiation-induced glycogen in the
relatively radiation-resistant MCF7 breast cancer and H460 lung
cancer cell lines (23). Jirasek and colleagues have reported
substantially increased glycogen content in radiated non–small

Figure 5.

Histologic assessment of radiation sensitivity and resistance. Top (A–D), middle (E–H), and bottom (I–L) panels display representative microscopic images of
H&E, Masson trichrome, and PAS-stained slides, respectively. The columns of panels from left to right: A, E, and I; B, F, and J; C,G, and K; andD,H, and L,
respectively, represent fields of view from tumors belonging to the treatment groups A549-NT, A549-XT, rA549-NT, and rA549-XT. Scale bars in A–D,
50 mm; E–L, 100 mm.
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cell lung tumor xenografts compared with nonradiated xeno-
grafts (26). However, while our study also found significantly
higher glycogen content in the radiation-sensitive A549 tumors,
Mathews and colleagues found no changes in glycogen content in
the radiation-sensitive LNCaP prostate cancer cells. These differ-
ences could be principally attributed to the different nature of the
measurement specimen (cells vs. tissue). The increase in intracel-
lular glycogen in their study was attributed to the phosphoryla-
tion of glycogen synthase kinase (GSK3b), a negative regulator of
glycogen synthase, which mediates the final step of glycogen
synthesis. Deactivation of GSK3b activity through phosphoryla-
tion has been shown to play a critical role in the acquisition of
radiation resistance in cancer cells (47). Although a direct role for
glycogen in conferring protection from radiation has not been
established, the availability of increased glycogen reserves could
provide cancer cells with glucose through glycogenolysis during
radiation-induced oxidative stress. Glucose utilization through
the pentose phosphate pathway can lead to the generation of
glutathione, which is an important scavenger of radiation-
induced free radicals. Our findings expand on these determina-
tions by providing the first direct comparisons of glycogen levels
in matched models of resistant and sensitive tumors. However,
the smaller effect sizes observed in the lung tumors coupled with
its absence in the HN tumors suggest that further investigations
are necessary to evaluate the clinical utility of glycogen as amarker
of treatment response.

To examine the histologic basis of the Raman spectroscopic
determinations, tumor sections were stained with H&E, Masson
trichrome, PAS andOil RedO– for cellularmorphology, collagen,
glycogen and lipid, respectively (Fig. 5A–L; Supplementary Fig.
SF4). While tumor morphology was found to be largely similar
across all tumor groups, H&E-stained images identified high
levels of necrosis as well as fibrosis in the tumor groups subjected
to radiotherapy (XT) comparedwith the untreated control tumors
(NT). Specifically, necrosis and fibrosis were found in all groups,
and were correlated, with an increase in necrosis associated
with an increase in fibrosis. Specifically, within the lung tumor
group, the A549-NT and rA549-NT tumors demonstrated higher
tumor burdens and lower levels of necrosis and fibrosis. Within
the HN tumor group, the lowest levels of necrosis were observed
in the 22B-NT tumors while the highest levels were observed in
the 47-XT group. Both 22B-XT and 47-NT had similar and
intermediate levels of necrosis and fibrosis. This is likely due to
the bulkier tumors observed in the 47-NT group. This tumor
overgrowth is often associated with a degenerative type of
necrosis secondary to ischemia. These histopathologic results
were largely consistent with the findings from Raman spectral
analysis. Furthermore, using bright field images of the Masson
trichrome and PAS-stained slides, we observed increased levels of
collagen and glycogen after radiation in both the sensitive and
resistant tumors. In addition, collagen content was noticeably
higher in the resistant tumors prior to radiation compared with
the sensitive tumors. The histologic images for the HN tumors
have been provided in Supplementary Information (Supplemen-
tary Fig. SF4).

In summary, we have used Raman spectroscopic mapping for
quantitative assessment of themolecular compositionof lung and
HN tumors subjected to radiotherapy, and shown that such
measurements offer a reliable, nonperturbative method to probe
radiation-induced alterations. These findings represent, to the
best of our knowledge, the first report comparing the microen-

vironmental response to radiation in tumor xenografts from
different organ sites using optical spectroscopy. Together, our
results provide promising evidence for the clinical translation of
Raman spectroscopy to discern molecular markers of radiation
response either prior to or during the early stages of treatment
using fiber optic probes in accessible tumors.

Towards that goal, there are twomajor focal points of our future
investigations. First, the clinical radiation dose of 2 Gy that was
used in this study will be delivered on successive days as is usually
performed in the clinic. The treatment regimenusedhere is similar
to previous approaches used to establish radiation sensitivity and
resistance in tumor xenograft models (28). Second, radiation-
inducedmicroenvironmental changes were evaluated ex vivo from
excised tumors. Our evaluation of differences related to intrinsic
radiation resistance was conducted on the untreated control
tumors. While we observed appreciable differences between the
A549-NT and rA549-NT tumors that canbe attributed to radiation
resistance, these results do not exactly predict whether these
tumors would go on to respond or fail treatment. The results
presented here provide an opportunity to further explore the
prediction of long-term treatment response based on measure-
ments made prior to commencing treatment in radiation-na€�ve
tumors in vivo. Our next study would involve in vivo pretreatment
measurements on tumors as well continuous measurements
during treatment administered on successive days to enable
longitudinal treatmentmonitoring.Our recent work using diffuse
reflectance spectroscopy identified changes in tumor oxygenation
in the A549 and rA549 tumors within 48 hours postradiation;
however,minimal or nodifferences in oxygenationwere observed
at the time of tumor excision (48). Therefore, it is possible that the
magnitude of radiation-induced biomolecular changes, as sensed
by in vivo Raman measurements, will be greater immediately
after radiotherapy. Moreover, the fabrication of appropriate
probes (49) as well as the emergence of vibrational spectroscopic
imaging systems that are already being adopted in clinical stud-
ies (50) indicate that translation of our proposed approach is
feasible. Hence, based on our current findings as well as these
technological developments, we envision that Raman measure-
ments will be employed in the near future to guide treatment
planning based on the inclusion of vibrational spectral profiles of
a patient's tumor.
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