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Microenvironmental reorganization in brain
tumors following radiotherapy and
recurrence revealed by hyperplexed
immunofluorescence imaging

Spencer S. Watson1,2,3,4 , Benoit Duc1,2,3,4, Ziqi Kang 5, Axel de Tonnac5,
Nils Eling 6,7, Laure Font 1,8, Tristan Whitmarsh9, Matteo Massara1,2,3,4, iMAXT
Consortium*, Bernd Bodenmiller 6,7, Jean Hausser 5 &
Johanna A. Joyce 1,2,3,4,10

The tumor microenvironment plays a crucial role in determining response to
treatment. This involves a series of interconnected changes in the cellular
landscape, spatial organization, and extracellular matrix composition. How-
ever, assessing these alterations simultaneously is challenging from a spatial
perspective, due to the limitations of current high-dimensional imaging
techniques and the extent of intratumoral heterogeneity over large lesion
areas. In this study, we introduce a spatial proteomic workflow termed
Hyperplexed Immunofluorescence Imaging (HIFI) that overcomes these lim-
itations. HIFI allows for the simultaneous analysis of > 45 markers in fragile
tissue sections at high magnification, using a cost-effective high-throughput
workflow. We integrate HIFI with machine learning feature detection, graph-
based network analysis, and cluster-based neighborhood analysis to analyze
the microenvironment response to radiation therapy in a preclinical model of
glioblastoma, and compare this response to a mouse model of breast-to-brain
metastasis. Here we show that glioblastomas undergo extensive spatial reor-
ganization of immune cell populations and structural architecture in response
to treatment, while brainmetastases show no comparable reorganization. Our
integrated spatial analyses reveal highly divergent responses to radiation
therapy betweenbrain tumormodels, despite equivalent radiotherapy benefit.

Glioblastoma is the most common and most aggressive primary brain
tumor in adults, with an incidence rate of up to 5 per 100,000 people1.
Standard-of-care treatment, consisting of surgical resection, ionizing
radiation (IR), and temozolomide-based chemotherapy, leads to only a
transient response. Consequently, median survival is just over 14
months, and the five-year survival is <5%2,3. This poor prognosis is
due to tumor recurrence in nearly all cases, emphasizing the need

for a deeper understanding of the mechanisms driving therapeutic
resistance.

Previous studies have investigated how glioblastoma responds
and recurs following both IR therapy and macrophage-targeted
immunotherapy4–10. One key mediator of resistance to treatment
is tumor-cell heterogeneity and plasticity, resulting in IR-resistant
subpopulations that can rapidly repopulate the lesion11–13. However,
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another critical aspect is how the tumor microenvironment (TME)
responds to IR, as this can modulate the efficacy of IR through several
mechanisms14–16. We previously revealed how different treatment
modalities induce substantial changes in immune cell populations in
murinemodels of glioblastoma4–7, which are related to eventual tumor
recurrence. However, due to the substantial number of cellular and
extracellular interactions in the TME, and consequently the highly
focused nature of previous studies, many of the general mechanisms
driving these pro-survival roles remain uncertain. It is thus increasingly
evident that there is a need to investigate the TME as a whole, to
interrogate the interplay of all themajor cell types with each other and
with structural features in the tumor ecosystem.

One challenge in studying the entire TME in all its complexity is
the substantial amount of different cell types, and the high number of
markers needed to delineate and identify each cell type in a single
sample. The typical methods used to explore cellular heterogeneity in
the TME include multiparameter flow cytometry and single-cell RNA-
seq. However, both methods disassociate the tissue, thereby losing all
spatial context of cellular interactions, in situ cellular morphology,
and correlation with tissue architecture and ECM. For this reason,
high-dimensional imaging techniques have become increasingly
vital to the study of the TME. Imaging mass cytometry (IMC)17, tissue
cyclic immunofluorescence (t-CycIF)18, Multiplexed Ion Beam Imaging
by Time of Flight (MIBI-TOF)19, MALDI mass spectrometry imaging
(MALDI-IMS)20, and oligo-conjugated antibody cyclic immuno-
fluorescence (Ab-oligo cyCIF)21 are among the current approaches22,23

for highly multiplexed tissue imaging capable of assessing 20–100
markers on a single tissue section.

While these techniques represent powerful and well-validated
methods of examining the spatial topography of the TME, they are not
universally suited to all applications. IMC has relatively small imaging
areas of 1mm2 which have a spatial resolution of approximately 1 µm
(equivalent to ~10Xmagnification).MIBI-TOF can achievemuch higher
resolutions, up to 200nm,but this comeswith a significant trade-off in
lengthy image acquisition times. MALDI-IMS can easily image whole-
slide sections, but with a maximum resolution of only 10 µm24. This
limits the ability to study tumors with structural features that exceed
these dimensions, or with cellular interactions involving small den-
dritic extensions, for example. In addition, commercial mass cyto-
metry imaging and Ab-oligo cyCIF solutions have a substantial initial
adoption cost, and require custom-conjugated antibodies, both of
whichcanbeprohibitively expensive, or challenging to conjugate if the
required markers are not commercially available. A significant addi-
tional limitation of these approaches is the low throughput, with
typical automated workflows allowing imaging of <10 slides per week.
Immunofluorescence (IF)-based multiplexed approaches use off-the-
shelf commercially available antibodies, but have many of their own
challenges. Current highly multiplexed imaging approaches require
repeated rounds of staining, imaging, and stringent stripping or
quenching of markers which can damage tissue samples and the pro-
tein epitopes targeted by antibodies. Moreover, while several of these
antibody removal methods are well validated in formalin-fixed paraf-
fin-embedded (FFPE) tissue, they can damage or destroy lightly fixed
frozen tissue.

In this study, we present a complete workflow for whole-slide
highly multiplexed tissue imaging, which we term Hyperplexed
Immunofluorescence Imaging (HIFI), to addressmultiple limitations of
existing methodologies. By requiring no bespoke reagents or equip-
ment, using commonly available reagents, and utilizing open-source
analysis approaches we aim to address the issues of cost and accessi-
bility of high-dimensional imaging for a broad scientific community.
We apply this workflow to the study of TME response to focalized IR in
a geneticmousemodel of glioblastoma. We employ a 45-marker panel
to analyze a sample set of tissues collected prior to treatment, 7 days
post-IR, or at the point of tumor recurrence to study the spatial

microenvironment response to treatment. To investigate the extent of
microenvironmental response depending on the tumor type, we also
compare the glioblastomamodel to abreast-to-brainmetastasismodel
at comparable volumes and timepoints. This comparison reveals
substantial TME reorganization in glioblastomas in response to IR
treatment, and the consistent generation of survival-promoting spatial
niches at 7 days post-IR. Conversely, brain metastases do not show
spatial reorganization or significant debulking in response to IR,
despite both tumor types receiving equivalent survival benefit from
the therapy.

Results
Overview of HIFI spatial analysis workflow
We purposely designed HIFI to be straightforward to implement with
open-source software and without the need for specialized lab equip-
ment. For these reasons, all IF staining was performed manually using
standard benchtop methodology and reagents, and all imaging was
performed with conventional commercial slide-scanning microscopes.
Figure 1 provides a graphical overview of the typical HIFI workflow,
showing the process of cyclic immunofluorescence imaging, whole-
slide image alignment and registration, machine-learning structural
annotation, deep-learning cell segmentation, and clustering-based cell
classification to generate highly annotated digital pathology images for
spatial analysis.

The workflow time course for a single experiment is dictated by
the size of the antibody panel, how many markers can be multiplexed
in each imaging round, and the speed of image acquisition. Multiple
days are required to complete a full hyperplexed panel. However, as
most modern slide-scanning fluorescence microscopes have capa-
cities for 80–100 slides, the ability to scale up to high-throughput
offsets the total time required for an experiment when compared to
other highly multiplexed approaches. 40× and 60× magnifications
across tissue sections are also feasible, however, this would come with
a tradeoff of increased scanning time.

A core component of the HIFI variant of cyclic-IF that we present
here is the gentle antibody removal, coupled with the avoidance of
crosslinkingbetweenfluorophores and tissue in the imaging stage. The
most disruptive step in other cyclic-IF approaches is typically the
elution of marker signal between imaging rounds. These methods use
either stringent acidic buffers to strip antibodies25, or a combination of
light and hydrogen peroxide to inactivate fluorophores18, both of
which can potentially damage lightly-fixed and fragile tissue samples.
HIFI utilizes a thiol-based elution buffer to reduce the disulfide bonds
of bound antibodies, releasing the antibodies from the tissue without
damaging tissue integrity. Thiol-based elution permits efficient yet
gentle removal of standard off-the-shelf primary and secondary anti-
bodies. Elution was further optimized for tissue sections by using an
appropriate pH and a brief 3-min elution step. This method was pre-
viously employed in cell culture using the iterative indirect immuno-
fluorescence imaging (4i) approach26, and was adapted herein for use
in tissue sections for the first time. The basis of 4i is the observation
that high-energy light from fluorescencemicroscopy light sources can
result in indirect oxidative crosslinking of fluorophores to the tissue,
preventing efficient elution. Inhibition of this crosslinking through
oxygen radical scavengers, or reduced light energy, can thereby
improve antibody elution at less stringent conditions. To address this,
we purposely optimized HIFI for low-power LED fluorescent light
sources, to prevent crosslinkingwhilemaintaining robust fluorescence
signals. These optimizations additionally allow for the use of standard
glass coverslips and glycerol-based mounting media while imaging,
rather than specialized mounting solutions. A further benefit of low-
power imaging is reduced fluorescence spillover between channels
when combined with appropriate bandpass filters.

The workflow of immunostaining, imaging, coverslip removal,
and elution are repeated until all rounds of markers are imaged.
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Following this non-destructive imaging, samples can be stained with
hematoxylin and eosin (H&E) for future analysis and stored long-term,
or used for additional experiments, such as proteomics. The post-
processing, alignment, and analysis of HIFI-generated images are dis-
cussed in the following use cases.

Generation of IR treated brain tumor samples and antibody
labeling panel
Glioblastomas present with a high degree of heterogeneity, with spa-
tial features that can cover substantial distances. Because of this,
selecting individual regions of interest (ROIs) for high-dimensional
image analysis can impart a substantial potential for selection bias. For
this reason, to robustly investigate how the cellular and structural
topography of glioblastoma responds to IR therapy, we endeavored to
develop a high-dimensional spatial analysis pipeline for whole tissue
sections that was not limited by sample size or preparation, and which
could achieve subcellular resolution and semi-quantitative protein
detection.

We utilized the RCAS-hPDGF-B; Nestin-Tv-a; Ink4a/Arf KO geneti-
cally engineeredmousemodel (GEMM) tomodel glioblastoma27,28. This
model drives neoplastic transformation in nestin-expressing neural
progenitor cells via overexpression of platelet-derived growth factor-B
(Pdgfb), resulting in glioblastomas that mimic the human proneural
phenotype, and with a fully intact immune system27,28. In addition, the
transformation includes expression of green fluorescent protein (GFP)
in Pdgfb-overexpressing cells, to fluorescently label and track the
resulting tumor cells. These gliomas are termed PDGfp herein. For a
comparative dataset we selected an orthotopic immune-competent
model of breast-to-brain metastasis (BrM) utilizing a luminal HER2 +

MMTV-PyMT-derived cell line5,29 injected at matched cranial coordi-
nates as used for initiation of the PDGfp model.

PDGfp or BrM tumors were initiated in mice at 5-6 weeks of age,
and animalsmonitoredweekly bymagnetic resonance imaging (MRI) to
screen for tumor formation and growth (Fig. 2a–c). PDGfp tumors were
initiated in both male and female mice, while breast-BrM were injected
only in femalemice. Once PDGfp tumors reached a volume of >20mm3,
they were either harvested (n = 5), or treated with a single focalized
10Gy IR dose (n = 10). BrM were similarly monitored until tumors
reached comparable volumes, and then either harvested (n = 3), or
treatedwith a single focalized 15Gy IRdose (n =6) (Fig. 2d). Appropriate
radiation doses for both tumor types were based on previous data that
assessed efficacious IR doses in these models (ref. 5, and Wischnewski,
[..], Joyce, manuscript in preparation). Critically, despite the lesser
tumor volume reduction in BrM, both models ultimately showed
equivalent survival benefit from these focalized IR doses. Comparisons
between treated samples in this study and historical data for untreated
subjects were completely in keeping with previous survival data for
these models4,5,29 (Wischnewski, [..], Joyce, manuscript in preparation).
At 7 days post-IR, MRI was performed on all mice, and tumor-bearing
brains were harvested for n = 5 PDGfp and n = 3 BrM mice. MRI mon-
itoring was continued bi-weekly for the remaining mice until tumor
recurrenceswere detected. Brainswere subsequently harvested (PDGfp
n = 5, BrM n = 3) and tissues embedded for cryo-sectioning. Volume
measurements showed substantial reductions in tumor size in PDGfp
tumors 7 days post-IR treatment, and a subsequent increase in volume
at the point of tumor regrowth (Fig. 2b, c). BrM tumors showed more
modest reductions in tumor volumes in response to IR, and a similar
increase in volume at the point of regrowth (Fig. 2d).
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Fig. 1 | Overview of Hyperplexed Immunofluorescence Imaging (HIFI) Work-
flow. Experimental workflow of cyclic immunofluorescence staining, followed by
image processing, alignment, and registration to create 45+ dimensional images
across whole-slide sections. Specific domains within HIFI images of tumors were
automatically annotated using trained machine-learning classifiers, and individual
cells were segmentedwith deep-learning object detection. Single-cell objects were

annotated as individual cell types with semi-supervised classification and mapped
back onto images to create highly-annotated digital pathology images. Images
were analyzed for regional cellular composition and spatial organizational analysis.
The HIFI workflow is scalable to over 100 simultaneous sections for high-
throughput spatial experiments.
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Following cryo-sectioning of brain tissue samples, at least three
replicate sections spaced at regular intervals across the entire Z-depth
of each sample were used to account for intratumoral heterogeneity. In
total, 87 whole-brain tissue sections were prepared for the imaging
pipeline. 45 markers were chosen to interrogate the PDGfp tumor
samples at each treatment stage. The antibody panel was based on
previous studies characterizing the TME of murine glioma models by
flow cytometry and other methods4–6,30. Various markers were selected
to label each of the predominant tumor, glial, vascular, and immune cell
types (Table 1). In addition, multiple antibodies were selected to label
ECM structures relating to the healthy brain, perivascular niche, and
treatment-inducedfibrosis. An additional series ofmarkerswas used for
the purpose of training machine learning models and for quality con-
trol. A subset of 29 of these markers was selected to interrogate BrM
samples, to which 4 new antibodies were added to specifically analyze
breast cancer heterogeneity (Supplementary Table 1).

A critical component in designing theHIFI panel was to determine
which antibodies could be multiplexed together, as well as the ability
to reliably label their target epitope following multiple rounds of
staining, imaging and elution. Antibody validation was performed
using existing methodology (Supplementary Note 1)18,26, which entails
comparisons of marker specificity in previously cyclic-stained
tissue versus unstained sections. To verify that markers are removed

between imaging rounds, control experiments were performed to
repeatedly label and image multiple tissues using a set of primary and
secondary antibodies. Markers were eluted following imaging, and
tissues were re-stained with only secondary antibodies and reimaged.
This process was repeated multiple times to determine single-cell
mean fluorescence intensity (MFI) for markers at each stage (Supple-
mentary Fig. 1). These data also show which marker intensities are
maintained over multiple elution rounds, which decrease, and which
even increase over rounds, thereby informing the sequential order of
markers in the panel. Markers were thus arranged into 12 individual
multiplexed panels based on their labeling efficiency and species
cross-reactivity (Table 1, Supplementary Fig. 1a).

Whole-slide image alignment and registration
Raw tiled image data from all rounds were stitched together for each
image with affine transformation (Zeiss Zen software package) to
create seamless whole-section images. Background fluorescent signal
was removed using the rolling-ball algorithm.

In cyclic fluorescence slide scanning, each round of imaging may
not necessarily be in the same exact position or orientation due to
stage drift and slide placement, so multiplexed images cannot be
simply merged directly. Whole-section images on this scale could not
be aligned with publicly or commercially available tools due to
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Fig. 2 | Irradiation Treatment Sample Collection and Antibody Panel. a PDGfp
and BrM tumorswere initiated inNTVA-Ink4a/Arf−/− and C57Bl6mice respectively,
andmonitored byMRI. Experimental endpoints (red arrows) are indicated for each
group. Biweekly MRI monitoring tracked the process of regression and recurrence
for each mouse following IR for b, c PDGfp (n = 5 mice for each treatment group)
and d, e BrM tumors (n = 3 mice for each treatment group. Upon tumor detection,

mice were grouped into cohorts and collected as either (i) ‘untreated’ samples,
(ii) treated with 10Gy (PDGfp) or 15 Gy (BrM) focalized irradiation (IR) therapy and
harvested 7 days post-IR, or (iii) treated with 10 or 15 Gy IR and harvested upon
tumor regrowth. White arrows indicate the tumor in both tumor types, red arrows
indicate post-IR lesion in PDGfp tumors. Source data are provided as a Source
data file.
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memory limitations and array-size limits. Therefore, we had to develop
an automated software tool in Python to align and register all rounds
of multiplexed imaging into a single hyperplexed image. The “HIFI
Alignment” tool utilizes existing algorithms for pyramidal sub-pixel
image alignment based on pixel intensity31, and implements them in
Pythonusing an image handling strategy tobypassmemory limitations
due to image array-size, bit-depth, or the number of channels (Fig. 3a).

This strategy enableswhole-slide rigid-body or affine alignment of
45+ channel images, which is only limited by the physical RAM avail-
able on a workstation (Fig. 3b, c). Whole mouse brain sections were
aligned using consumer-gradeworkstations with 256GBof RAM,while
image subsets of whole PDGfp tumors could be aligned on standard
computers with 64 GB of RAM. HIFI Alignment includes a CZI reader
and writer for Axio Scan.Z1 images, but can also accommodate images
in multiple TIFF formats.

An important feature of the HIFI Alignment tool is the ability to
perform pixel-by-pixel removal of tissue autofluorescence from all
channels to prevent any contamination of marker signals in sub-
sequent rounds of imaging. Imaging of tissue samples in all channels
prior to antibody labeling, as was performed with the PDGfp and BrM
IR-treated samples, creates an image of overall tissue autofluorescence
which is then subtracted from respective channels in each round of
imaging. Autofluorescence subtractionwas then performed for all BrM
samples, but not for PDGfp samples - so as to not remove the endo-
genous GFP signal in the tumor cells.

The HIFI methodology was specifically developed to work with
challenging sample types that perform poorly with other highly mul-
tiplexed imaging techniques. To validate that HIFI also works in more
standard sample types, we performed additional HIFI experiments
across multiple murine organ FFPE samples (Supplementary Fig. 2).

Following imaging, sections were cropped to the area of interest.
Whole-slide imaging facilitated selection of regions for analysis that
encompassed the entire tumor area and large regions of the sur-
rounding brain, thereby eliminating sample biaswithin the tumor. This
workflow generated sixty PDGfp images in 45-dimensions, and twenty-
seven BrM images in 33-dimensions (Fig. 3d, e). Untreated and 7-days
post-IR PDGfp tumors were found to be consistent across replicates in
terms of position and morphology, while regrowth gliomas showed
extensive morphological heterogeneity (Fig. 3f, Supplementary
Fig. 3a). Conversely, BrM tumorswere observed tobe highly consistent
across all replicates and treatment conditions (Fig. 3g, Supplemen-
tary Fig. 3b).

Machine learning structural annotation and deep learning cell
segmentation
HIFI images were first reviewed for all channels to identify any imaging
aberrations, such as dust contamination or tissue deformations from
sectioning, for the purpose of excluding these areas fromdownstream
analysis (Fig. 4a). During this critical quality control review,HIFI images
that did not meet stringent criteria were excluded from the study,
resulting in n = 81 images for subsequent in-depth analysis. Images
were analyzed with the open-source digital pathology suite QuPath32.
The ability to image an entire tumor area with subcellular resolution
facilitated the correlation of individual cell typeswith larger features of
tumor architecture. To analyze this topographical heterogeneity, we
trained an AI pixel-classifier model with pathological annotations
based on multiple cellular and ECM features, and then applied each
model for each feature across all images (Fig. 4a). Tissue regionswithin
each sample were automatically annotated to identify lesion bound-
aries, tumor nests, vasculature, areas of fibrosis, and modified to
delineate perivascular niches, the surrounding brain, and tumor-brain
interface border.

Table 1 | PDGfp HIFI marker panel

Tumor

GFP Pan tumor

Olig2 OPC

Sox9 Glial precursor

Sox2 Glial precursor

Immune

CD3 Pan T cell

CD8a Cytotoxic T cell

Iba1 Macrophage

CD68 Macrophage

P2YR12 Microglia

CD45 Pan leukocyte

CD206 Meningeal

Ly6b Neutrophil

S100A8 Neutrophil activation

MPO Neutrophil activation

ECM

Tenascin-C Fibrotic ECM

Laminin Vascular ECM

Periostin Non-structural ECM

CSPG5 Parenchymal ECM

Fibronectin Fibrotic ECM

Collagen I Fibrotic ECM

Collagen IV Fibrotic ECM

Neurons

FoxP1 Neural stem cell

NeuN Pan neuronal

NF-H Neurofilament

Vascular

ER-TR7 Reticular fibroblast

PDGFRB Pan perivascular cells

CD31 Endothelial

αSMA Mural cells

CD13 Pericyte

VE-Cad Endothelial

Glial

Vimentin Astrocyte subset

GFAP Astrocyte activation

Podoplanin Reactive gliosis

S100B Pan astrocyte

Desmin Astrocyte subset

NG2 OPC

Cell State

Ki67 Proliferation

CC3 Apoptosis

HIF1a Hypoxia

Lamin AC Nuclear envelope

Functional

RedDot2 QC

WGA Machine learning

αTubulin Machine learning

Phalloidin Machine learning

List of multiplexed markers used specifically for PDGfp glioblastoma samples, indicating cate-
gory of marker, marker name, and marker target.
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align cyclic IF images while avoiding memory limitations and removing endogen-
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cropped to encompass the entire tumor region and surrounding brain. Scale
bars = 500 µm. Representative images of (f) PDGfp and (g) BrM samples from
untreated, 7 days post-IR, and regrowth tumors. Scale bars = 400 µm.
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regions of interest (ROIs) during quality control checks (white arrow indicates a
representative example of a tissue tear). Scale bar = 500 µm. b Nuclei in murine
glioblastoma samples were manually annotated to train StarDist nuclear detection
models. Detection accuracy was compared to threshold-based watershed

segmentation and the publicly available StarDist model for immunofluorescence
(DSB_Heavy). Segmented nucleiwere expanded by 2.5 µmto capture cell cytoplasm
and classified by semi-supervised cell classification. Scale bars = 50 µm. Region
annotation, cell segmentation, andcell classificationwere applied independently to
all (c) PDGfp and (d) BrMHIFI images to generate fully annotated digital pathology
images. Scale bars = 400 µm.
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We then performed cell segmentation for single-cell measure-
ments of MFI, cell size, and localization. However, glioma tissue
contains densely packed irregular nuclei, andDAPI staining of nucleic
acids can additionally create non-uniform labeling across nuclei
(Fig. 4b). This combination of factors dramatically reduced the
accuracy of intensity-based watershed algorithms for nuclei seg-
mentation in these tissues. (Fig. 4b). For this reason, we instead
employed the supervised deep-learning algorithm StarDist33 imple-
mented in QuPath. StarDist utilizes U-Net34, a convolutional neural
network (CNN) designed for biomedical image analysis. As such,
StarDist requires annotated ‘ground truth’ images to train the CNN to
learn to accurately predict object probabilities. Ground truth nuclear
annotations were manually performed on 144 large images of mul-
tiple murine tissues stained with DAPI. Our murine training dataset
included multiple samples from PDGfp tissues, breast-BrM, lung-
BrM, breast tumors, human breast tumor xenografts, and healthy
tissue from brain, mammary glands, and lungs. Additional images
were generated via image transformations using transposition, flip-
ping of the axes, as well as random changes of signal intensity, to
encourage the CNN to be robust to these transformations. Transfer
learning from the published StarDist immunofluorescence model33

was also performed to further increasemodel accuracy. We used this
approach to generate two robust deep-learning nuclei segmentation
models; one specifically trained on only PDGfp tumors for enhanced
accuracy, and another trained on the entire data set for broad
applicability to any mouse tissue (Fig. 4b). The publicly released
DSB_Heavy StarDist cell segmentation model was found to have an
accuracy of 68.86% on our training data, while our glioma-specific
model had an accuracy of 74.96% (Fig. 4b). Accuracy was further
enhanced in the dataset by filtering all cells with a detection prob-
ability score of <0.5.

Segmentation was performed with StarDist using our murine-
trained model to identify each nucleus as a vector object, and each
object was given an additional maximum expansion of 2.5 μm to
measure cytoplasmicmarker signals (Fig. 4b).Cell size, shape,MFI, and
XY location were measured for every cell. Further spatial measure-
ments were performed following single-cell MFI and morphometric
measurements. Additionally, the distance of each cell to the nearest
region annotationborderwas recorded tomeasure cell proximity to all
structural features within the image.

Clustering based semi-supervised cell classification
A potential drawback of using cyclic immunofluorescence for high-
dimensional imaging is the low dynamic range, or depth, of marker
signals compared to mass spectrometry-based approaches. This can
create challenges for standard clustering-based approaches of unsu-
pervised cell classification, especially when some markers have low
intensity relative to other markers. A further challenge to employing
computationally intensive clustering algorithms is that applying them
to very large single-cell HIFI datasets (such as the PDGfp dataset con-
taining ~7 × 106 cells) is the time required for analysis, which can be
>1 week for a single dataset. Therefore, to achieve distinct clusters for
cell classification despite low signal dynamic range, we next optimized
a computationally efficient FlowSOM approach35.

MFIs for markers unique to specific cell types were measured for
the whole-cell area or the nuclear area, depending on the cell biology
of each marker (Supplementary 2). This enhanced cluster specificity
and reduced signal spillover to neighboring cells. Each MFI used for
classificationwas scaled from0 to 1, and clipped to the 99.7 percentile.
Cells were filtered based on size to remove fragments, and each PDGfp
and BrM dataset were clustered independently across all treatment
types with FlowSOM to maintain uniformity. FlowSOM was set to
produce 100 unique nodes for each dataset. Hierarchical clustering of
marker MFIs was used to cluster nodes into cell type annotations
(Supplementary Fig. 4a–c).

Cellular annotation of unbiased clusters based on previous bio-
logical knowledge of the TME resulted in semi-supervised cell classi-
fication (Fig. 4c, d, Supplementary Fig. 5a, b). To maintain aspects of
cellular heterogeneity we used generic nomenclature, such as
Tumor_A or Tumor_B, to provide general classifications while still
maintaining the unbiased heterogeneity that was revealed by cluster
analysis. In particular, tumor cells, TAMs, astrocytes, and vasculature
presented with consistent heterogeneity in both the PDGfp and BrM
datasets. Four tumor cell clusters were identified in PDGfp samples,
Tumor_A-C and the category OPC-Like which could not reliably be
distinguished from normal oligodendrocyte precursor cells (OPCs)
due to their known phenotypic similarity. These subtypes were stra-
tified based on their expression of GFP, Olig2, Sox2, and Sox9 (Sup-
plementary Fig. 5c). We further analyzed the proportion of Ki67
positivity, showing that tumor clusters A, B, and C had equivalent
proportions of proliferating cells in untreated and regrowth tumors
(Supplementary Fig. 5d). OPC-Like cells showed the least proliferation,
but still sufficient levels to indicate that this population included
neoplastic cells, despite their lack of the GFP tumor cell marker
(Supplementary Fig. 6a). This is consistent with the reported ability of
glioblastomas to recruit non-transformed cells into the TME36. Inter-
estingly, the Tumor_A phenotype, which had the highest expression of
GFP, was the most impacted by IR treatment in terms of proliferation,
showing almost no proliferation at 7-days post treatment (Supple-
mentary Fig. 5c, d). This phenotype is consistent with quiescent resi-
dual glioma cells that are both radio- and chemo-resistant37.

In BrM, we also identified four tumor cell clusters, termed
Tumor_A-D, stratified based on expression of EpCAM, cytokeratin 8,
cytokeratin 14, and E-cadherin (Supplementary Fig. 5e). Each BrM
tumor cluster showed almost complete loss of proliferation following
IR (Supplementary Fig. 5f). The percent of proliferating cells in
regrowth BrM did not match that of untreated tumors, but this likely
does not reflect long-term alterations in proliferative capacity caused
by treatment. For animal welfare reasons, and tomaintain comparable
tumor sizes, regrowth BrM were harvested when progression was
measurable by MRI, not at the point that their growth curve matched
that of untreated tumors. Tumor clusters in BrM showed consistent
spatial localization across treatment types, with the type A phenotype
comprising themajority of the tumor core, while type B was dominant
in areas of dense luminal structure, and C and D was predominantly
localized to the tumor border (Supplementary Fig. 6b).

TAM populations were delineated in both the PDGfp and BrM
datasets based on their expression of CD68, P2ry12, Iba1, CD206, and
CD45 (Supplementary Fig. 5g). TAM_A cells showed higher overall
expression of CD68 and CD45, resembling myeloid-derived macro-
phages (MDMs). TAM_B showed higher expression of Iba1, which may
represent both activated MDMs and resident microglia. TAM_C
showed the highest expression of P2ry12, which along with their
localization outside of the tumor mass, suggests they are pre-
dominantly brain-resident microglia (Supplementary Fig. 6c). TAM_D
cells showed the highest expression of CD206, localizing primarily to
meningeal regions in similar distribution patterns to meningeal mac-
rophages. The remaining immune cells that could not be reliably
classified as known cell types were classified generally as CD45+, and
represent a range of infiltrating myeloid cell types.

Astrocytes also clustered into two distinct patterns, with Astro-
cyte_A cells showing lower expression of GFAP and localizing to distant
brain areas outside of the tumor, while Astrocyte_B cells showed
higher expression of GFAP, and localized to the border regions of both
PDGfp and BrM tumors (Supplementary Figs. 5h and 6d). Neurons
stratified into two subtypes in PDGfp tumors based largely on their
expression of FOXP1, which was specific to Neuron_B cells. FOXP1 was
not included in theBrMantibodypanel, and soNeuron_B cellswere not
identified in this dataset. Interestingly, blood vessels also separated
intomultiple categories in both PDGfp and BrM tumors, despite a lack
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of diverse phenotypic markers for the endothelium in the antibody
panelswe haddeveloped (Supplementary Fig. 5i). Vessel_A cellsmostly
localized to brain regions outside of the tumor, while Vessel_B cells
were associated with dysregulated vasculature within both PDGFp and
BrM tumors. Vessel_C type cells were further stratified in PDGfp
tumors based on high expression of αSMA (Supplementary Fig. 6c).

Region and cell type quantification
Quantification of PDGfp tumors across treatment types revealed pro-
nounced changes in the cellular landscape of glioblastoma samples
following IR therapy (Fig. 5a). Untreated gliomas were predominantly
comprised of tumor cell types, neurons, and astrocytes, with a mixed
population of TAMcell types, and very small populations of T cells and
neutrophils. PDGfp tumors 7-days post-IR showed the expected
depletion of tumor cell populations, and a notable increase in TAM_A,
TAM_B, T cell, neutrophil, and fibroblast populations. TAM popula-
tions more than tripled in percent-total, with marked increases in the
TAM_A population in particular. Regrowth tumors largely recapitu-
lated the cellular landscape of untreated tumors, with alterations in
tumor type percentages, but with an increase in T cells compared to
untreated tumors. Conversely, BrM tumors showed no widespread
alterations in cellular landscape following treatment, or upon tumor
regrowth, other than an increase in T cell populations (Fig. 5b).

Intratumoral regions were also significantly altered by IR in PDGfp
tumors. There was a substantial increase in the percent-total of ECM-
rich fibrotic regions following treatment, which was subsequently
reduced upon tumor regrowth (Fig. 5c). This correlates with a similar
increase in the percentage of fibroblasts 7 days post-IR. Annotated
structural regions in BrM tumors were much more consistent follow-
ing IR treatment, with significant differences in only the ratio of tumor
area to brain, consistent with the observations of reduced tumor
volume following treatment, and subsequent increases at the point of
regrowth (Fig. 5d).

We further assessed the cellular composition of each of the
annotated structural regions in both PDGfp and BrM tumors at each
treatment point (Supplementary Fig. 7a–e). There were significant
increases in TAMs, T cells, and fibroblasts in Border, ECM, and Peri-
vascular regions of PDGfp tumors, which correlates with similar
increases in areas of fibrosis (Fig. 5e). Conversely, BrM tumors only
showed significant alterations in the distribution of tumor types and
T cells in response to treatment (Supplementary Fig. 7d, e).

Graph-based spatial network analysis
To analyze spatial relationships of cell types in HIFI data we employed
orthogonal graph network and clustering-based approaches. We used
graph-based network analysis to directly assess and summarize con-
sistent cellular distance relationships from combined spatial data for
each treatment type (Fig. 5f, g). Proximity network graphs used the
Fruchterman-Reingold algorithm to set edge lengths betweennodes as
the mean distance between that cell type and the nearest neighbor of
an alternate cell type. Edge weight was set as the inverse of standard
deviation to reveal which interactions are more highly conserved
between images. Edge weights that fell below a preset threshold were
removed from the network. Node size for each cell type shows the
relative percentage of those cells in the total population, binned into
discrete node sizes. Network graphs were then clustered into sub-
domains based on similar nodal connections.

Network plots for PDGfp tumors revealed consistent cellular
relationships within and between treatment types, along with pro-
nounced changes between tumor and immune cell populations fol-
lowing IR. Specifically, network plots revealed an increased association
between surviving Tumor_A cells after treatment and increased
populations of TAM_A, Fibroblasts, and Astrocyte_B cells. This corre-
lates with the observed increase in fibrosis, and indicates a potential
survival niche for radioresistant tumor cells (Fig. 5c, e). Additionally,

theseplots show the global extent of organized patterning, with 7 days
post-IR samples having far less architectural structure and compart-
mentalization compared to untreated tumors. This was further
reflected by cellular heterogeneity of each network; 2.35 mean Shan-
non Diversity Index for 7 days post-IR, versus 2.01 for both untreated
and regrowth samples (Fig. 5f).

Consistent with the results discussed above, BrM network orga-
nization did not change substantially following treatment, with similar
cellular distance relationships, and clear cellular compartmentaliza-
tion depicting the tumor, surrounding brain, and tumor-brain border
(Fig. 5g). Cellular diversity was alsonot substantially different based on
mean Shannon Diversity.

Cell neighborhood analysis
Cellular neighborhood analysis38 was performed with imcRtools39 by
packaging HIFI data as SingleCellExperiment objects in R40. Treatment
conditionswere independentlypooled for PDGfpandBrMdatasets, and
15 cellular neighborhoods (CNs) were identified in each (Fig. 6a, b).
Metadata for each cell was annotatedwith theCN they belonged to, and
the percent-total of all CNs was quantified for each image in each
treatment condition (Fig. 6c, d). The total proportion for 13 of 15 CNs
was found to change significantly following treatment in PDGfp tumors,
while only 4 CNs were significantly different between untreated and
7 days post-IR in BrM tumors. This again demonstrates the absence of
spatial reorganization of BrM lesions in response to IR.

Of particular interest were the CN populations in PDGfp samples
that were essentially unique to post-IR treated samples; CN2, CN5, and
CN14. These 3 CNs clustered together in terms of cell type composi-
tion, being predominantly comprised of T cells, Fibroblasts, Astro-
cyte_B, Neutrophils, TAM_A, TAM_B, Vessel_B, Vessel_C, and small
percentages of Tumor_A cells (Fig. 6a). Each of these CNs were mostly
specific to regions of regressed lesions in samples 7 days post-IR
treatment (Fig. 6e). Visual validation of regions enriched in these 3CNs
(Fig. 6f–h) correlate with fibrotic regions identified by machine-
learning annotation (Fig. 5c).

Cell interaction analysis was performed to assess significant
colocalization of cells within a 30 µmdiameter in untreated and 7 days
post-IR PDGfp tumors39,41. The Tumor_A cell type was found to be
significantly anti-correlated with Fibroblast, T cell, Neutrophil, and
Astrocyte_B cell types prior to treatment. 7 days post-IR treatment,
Tumor_A cells became significantly colocalized with each of these cell
types, as well as TAM_A, and CD45+ cells. (Fig. 6i, j). These results
corroborate the previous orthogonal spatial analyses: each of the cell
types cluster together in proximity network analysis of 7 days post-IR
samples (Fig. 5f), they comprise CNs 2, 5, and 14 (Fig. 6a), and each are
observed to be increased in the fibrotic ECM niche of treated samples
(Fig. 5e, Supplementary Fig. 7c). The presence of the non-proliferative
Tumor_A phenotype in this fibrotic niche suggests these spatial
superstructures represent a survival niche for dormant radioresistant
tumor cells (Watson, Zomer, [..], and Joyce, manuscript in revision).

The proximity network and cell neighborhood analyses of BrM
tumors indicated that they do not respond to IR treatment in terms of
spatial reorganization as PDGfp tumors do. Rather, the survival
mechanism for IR-treated BrM samples appears to primarily rely on
tumor cells entering into a quiescent state. Proliferating tumor cell
populations are significantly reduced for all identified tumor types at
7 days post-IR (Supplementary Fig. 5f). Based onMRI volume data and
image analysis, we did not observe significant reductions in tumor
volume or cleaved-caspase 3+ apoptotic cells at the 7-day timepoint.
These combined data indicate that BrM tumor resistance to IR therapy
is driven predominantly by enrichment for lower proliferating cells, or
by cell-state switching to quiescent states, rather than the formationof
spatially protective niches. However, despite the difference in survival
mechanisms, single dose focalized IR treatment was equally and
transiently effective in BrM tumors as for PDGfp tumors.
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Discussion
High-dimensional digital pathology is a powerful approach for
deriving biologically meaningful data from complex tissues, such as
the multicellular TME. Our goal herein was to create a workflow that
was fully agnostic to tissue processing, and required no special
reagents, conjugated antibodies, or expensive equipment, so as to
lower the barrier of entry to highly-multiplexed image analysis. By

optimizing the workflow for a challenging ‘worst-case scenario’, in
this case, lightly-fixed cryo-embedded glioblastoma and brain
metastasis tissues, we have developed a robust imaging and analysis
pipeline that is non-destructive for the tissue, allows for whole-slide
image sizes, uses standard off-the-shelf antibodies, and that is scal-
able to high-throughput. This workflow includes the development
of software tools that can handle large extracellular structural
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features, endogenous tissue autofluorescence, and densely packed
irregular nuclei.

Some recent cyclic-IF approaches can now achieve between
60–100 markers42, which is especially useful for rare and precious
patient samples where researchers seek to extract the maximum data
possible. HIFI is envisioned as a platform to add to researchers’options
when dealing with samples and research questions that are not
well addressed by other current techniques, and with the important
components of ease of use and accessibility to a broad research
community.

Combining large imaging areas, high magnification, and multiple
markers of ECM components herein enabled a much broader envir-
onmental context for exploring cellular interactions in the TME. In
addition to directly interrogating changes in fibrosis, desmoplasia, and
healthy brain ECM, thesemarkers facilitated improved classification of
tumor domains by machine learning classifiers. Automated classifiers
required minimal training due to the depth of our image data and
provided valuable data points for spatially aware cellular analysis.
These integrated metrics facilitated multiple orthogonal computa-
tional analyses to assess both the spatial organization of glioblastoma
and brain metastasis models, as well as how that microenvironment
organization responds to radiotherapy.Weobserved significant spatial
reorganization in our murine glioblastoma model in response to IR,
both in terms of cell landscape, spatial relationships, and super-
structure patterning. Of particular interest were spatial niches that
correlatedwith treatment-inducedfibrosis specifically in glioblastoma,
harboring quiescent tumor types. These niches indicated a potential
survival mechanism whereby the local environment promotes
tumor dormancy and survival, leading to subsequent glioblastoma
recurrence. This is consistent with recent reports demonstrating ECM-
mediated tumor cell dormancy43, and the identification of gene sig-
natures related to fibrosis being predictive of more rapid tumor
relapse and reduced overall survival in glioblastoma patients44.

Conversely, the breast-to-brainmetastasis model showed no such
organizational response to IR treatment. Instead, these tumors
demonstrated reduced proliferation following treatment, with no
significant debulking, or changes in cellular landscape other than
increased T cells after treatment. Nonetheless, both glioblastoma and
brain metastasis preclinical models received similar transient survival
benefits from radiotherapy, indicating markedly distinct survival
mechanisms between different tumor types in the same host tissue.

In summary, our HIFI approach is non-destructive, allows for
large-scale imaging, and is adaptable for high-throughput analysis.
Critically, the workflow reported herein is low-cost and opensource,
such that it can be easily adoptable and broadly accessible for the
scientific community. While we have demonstrated the use of the HIFI
strategy in cancer tissues, this pipeline can equally be used in the
analysis of any tissue type. We have purposely designed the workflow
to be independent of the sample preparation, making it versatile for
various types of tissue samples and eliminating the need for specia-
lized reagents or equipment. Additionally, we have incorporated
software tools to address the challenges of analyzing the complexity of
the TME, such as identifying large extracellular structures and irregular
nuclei. Our approach thus offers researchers a new strategy for

studying the TME during tumor evolution, and following therapeutic
intervention, enabling a deep and comprehensive interrogation of
multicellular regional interactions.

Methods
Cell lines
Cell lines were cultured in DMEM + Glutamax (Gibco) containing 10%
fetal bovine serum (FBS, Gibco) and 1% penicillin/ streptomycin
(Gibco). DF1 chicken fibroblast and PyMT-BrM3 were grown under
adherent conditions. The PyMT-BrM3 breast cell line was derived from
the murine parental 99LN cell line, which was isolated from a meta-
static lymph node lesion that arose in the MMTV-PyMT (murine
mammary tumor virus; polyoma middle T antigen) breast cancer
model (C57BL/6J background). This cell line was sequentially selected
three times in vivo for brain-homing capacity, resulting in the PyMT-
BrM3 variant used herein5. All cell lines were routinely authenticated
for morphology and growth dynamics, and tested for mycoplasma
contamination.

Animal models, treatments, tissue processing
All animal studies were approved by the Institutional Animal Care and
Use Committees of the University of Lausanne and Canton Vaud,
Switzerland (License numbers: VD3804 and VD3688). Mice were
housed in theAgora In VivoCenter (AIVC) animal facility in individually
ventilated cages, under a 12 h light/dark schedule at 22 °C and in the
presence of 2–4 cage mates. Standard autoclaved lab diet and water
were provided ad libitum.

Murine genetically-engineered mouse models (GEMMs) of glio-
blastoma were generated as previously reported27,45–47. Nestin-Tv-
a;Ink4a/Arf−/− mice in the C57BL6 background were bred and main-
tained at the Agora Cancer Research Center, University of Lausanne
(UNIL), Switzerland. At 5–6 weeks of age, glioblastomas were induced
in GEMMs by injection of DF-1 cells producing viral vectors containing
both PDGF-B and GFP as described previously45, and monitored
biweekly by MRI for tumor development. Female C57BL6 mice
received intracranial injection of the PyMT-BrM3 breast-to-brain
metastasis cell line29 at matched age and cranial coordinates for
tumor initiation in the PDGfpmodel. Themaximum humane endpoint
tumor size approved per out animal protocols was 1.5 cm3 for PDGfp
and 0.2 cm3 for BrM, all mice were euthanized before reaching the
maximum allowed tumor burden. Once tumors exceeded 20mm3,
mice were randomly assigned without blinding to treatment groups
(untreated, 7 days post-IR, or rebound). Mice were anesthetized by
isofluorane and administered a single whole-brain focalized dose of
ionizing radiation using the Precision X-Ray X-RAD SmART irradiator
(10Gy for PDGfp mice, 15 Gy for BrM mice). MRI monitoring was
continued following IR treatment, and mice were euthanized upon
tumor recurrence as approved by the Institutional Animal Care and
Use Committee.

Animals were euthanized via pentobarbital injection, and per-
fused intracardially with 10ml of PBS, followed by 10ml of PLP buffer.
PLP buffer consisted of 1% paraformaldehyde (PFA), 0.2% NaIO4, 37.5%
L-lysine and 37.5% P-buffer (containing 81% of Na2HPO4, 19% of
NaH2PO4 diluted in water, pH = 7.4) (Sigma Aldrich). Brains were

Fig. 5 | Spatial analysisof IR-treatedbrain tumors.Percentageof the total cellular
composition quantified for each treatment group pooled across all images for (a)
PDGfp and (b) BrM. Percentage of the area of tumor regions plotted for all groups
for (c) PDGfp and (d) BrM. eCell composition of tumor border, perivascular niches,
and fibrotic regions for selected cell types in each treatment group. Box-plots for
c-e showpercent totals for each image (PDGfpUntreatedn = 19 images, 7 dayspost-
IR n = 17 images, Regrowth n = 18 images, BrM n = 9 images for each treatment). p
valueswere calculated using two-wayANOVA test. p values for c (from left to right):
<0.0001, <0.0001, <0.0001, <0.0001, 0.0002, <0.0001, 0.0067, 0.0045. p values
for d (from left to right): 0.0023, 0.0317, 0.0044. p values for e (from left to right):

Border, 0.0002, 0.0256, 0.0002, 0.0411, <0.0001, <0.0001, <0.0001, <0.0001,
<0.0001, <0.0001, Perivascular < 0.0001, 0.0003, <0.0001, <0.0001, <0.0001,
<0.0001, 0.001, 0.0094, <0.0001, <0.0001, Fibrosis, 0.014, <0.0001, <0.0001,
0.0486, <0.0001, <0.0001. Cell adjacencygraphnetworkplots of pooled treatment
types and associatedmean ShannonDiversity Index (μH’) for (f) PDGfp and (g) BrM
microenvironments. Node sizes represent the binned range of percent-total cell
populations, edge length is the mean distance between nearest neighbors, and
edge width is the inverse standard deviation of mean distance. Gray outlines show
clusters of nodeswith similar neighbor relationships. Source data are provided as a
Source data file.
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excised and fixed in PLP overnight at 4 °C with gentle shaking. Tissue
samples were washed in PBS, then transferred to 30% sucrose
overnight at 4 °C with gentle shaking. Finally, mouse brains were flash-
embedded in Optimal Cutting Temperature (OCT) compound (Tissue-
Tek), then cryosectioned onto Fisherbrand Superfrost Plus slides at
10 µm thickness. All slides were stored at −80 °C until used for staining
and imaging experiments.

Antibody labeling and imaging
Prior to study, all antibodies were validated for compatibility with the
HIFI approach (Supplementary Note 1). Tissue section slides were
thawed at room temperature (RT) and allowed to dry for 15min, then
OCTwas removed in a PBS bath at RT for 5minwith gentle agitation. An
optional step at this point is a post-fixation in 4% PFA on ice for 5min,
followed 2 × 5-min PBS washes and quenching in 0.1M glycine for
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20min at RT. Slides were then placed into humidified chambers, and
tissue sections were outlined with a hydrophobic barrier using
peroxidase-antiperoxidase (PAP) pens. Tissue sections were permeabi-
lized with 0.2% Triton X-100 in PBS for 10min at RT, then washed twice
in PBS at RT with gentle agitation. Slides were stained for nucleic acid
with DAPI at 1:2000 dilution in HIFI Staining Buffer (HSB; 5% normal
donkey serum (Merck) and 100mM NH4Cl (Sigma Aldrich) in PBS) for
10min at RT, then washed 3 times in PBS at RT with gentle agitation.
SlowFadeDiamond (Invitrogen)mountingmediumand 22 ×22 cmglass
coverslipswere used tomount slides for imaging. All slideswere imaged
onaZeissAxio ScanZ1withColibri LED light source. TheLEDpowerwas
set to the lowest possible settings based on the photonic energy of each
wavelength. The 350 channel was set to 5% power, 488 set to 20%,
555 set to 50%, 647 set to 50%, and750 set to 100%. Exposure timeswere
set to experimentally predetermined lengths to captureDAPI signal and
endogenous tissue autofluorescence for all channels. Following ima-
ging, slides were placed in a horizontal slide rack with the bottom
removed, this rackwas then placed into a PBSbathwith gentle agitation
until coverslips fell off without manipulation. Sections were blocked
with HIFI Blocking Buffer (HBB; 10% normal donkey serum (Merck),
150mMMaleimide (SigmaAldrich), and 100mMNH4Cl (SigmaAldrich)
in PBS) for 1 h at RT as previously described26. HBB was then removed
and replaced with the primary antibody mix in HSB, and allowed to
incubate for 1.5 h at RT on an orbital rocker. Slides were washed 3 times
in PBS for 5min at RT with gentle agitation following primary antibody
incubation, then secondary antibodymixwith conjugated fluorophores
in HSB was added, and slides were incubated for 1 h at RT on an orbital
rocker. All secondary antibodies were raised in donkey to optimize
compatibility. Slides were washed 3 times in PBS for 5min at RT with
gentle agitation following secondary antibody incubation, and directly
conjugated antibodies in HSB were added, and slides were incubated
for 1 h at RT on an orbital rocker. If no conjugated antibodies were
included in that round of antibodies, slides proceeded to the next step.
Slides received three final washes in PBS for 5min at RT with gentle
agitation, andwere thenmounted for imaging. Following imagingof the
first round of markers, coverslips were again removed, and antibodies
were eluted by adding elution buffer (0.5M Glycine, 3M guanidine
hydrochloride (Sigma Aldrich), 3M Urea (Sigma Aldrich), 40mM tris(2-
carboxyethyl)phosphine (Sigma Aldrich), in deionized H2O) for 3min-
utes with gentle agitation at RT. The above process was repeated for all
rounds of antibody panels. HIFI staining was performed in two separate
rounds of imaging,first for half of PDGfp samples (PDGfp1), then for the
other half of PDGfp samples (PDGfp2) and all BrM samples. PDGfp1,
PDGfp2, and BrM were each analyzed and clustered independently to
avoid batch effects. PDGfp1 and PDGfp2 datasets were then merged at
the point of cellular annotation.

Image post-processing was performed for all 16-bit tile-scanned
images using the Zeiss Zen software platform. Tile stitching and fusion
was performed for all images. Background subtraction was performed
with the rolling-ball subtraction method using a diameter of 75 µm.

Image alignment, cell detection, and cell classification
The alignment script was developed in Python to reassemble images
from multiple imaging rounds into full-resolution OME TIFF images.

For each HIFI image, the DAPI channel of the first imaging round was
loaded to serve as the alignment reference. Subsequent DAPI channels
were loaded in sequence. Rigid body (or affine) transformation aligned
each DAPI channel to the reference by minimizing the squared dif-
ference between the reference and the transformed channel using
PyStackReg31. The transform was then applied to each image channel
of that round, keeping only one channel in memory at a time. The
transformed round was then saved to disk, and the next round was
processed. Aligned channels from all rounds were concatenated into a
single OME TIFF and compressed into a pyramidal image format.
Metadata for pixel scale and proteinmarker identifiers of each channel
were propagated to the final image.

Cell segmentation was performed using the CNN-based StarDist
algorithm33 implemented in Qupath. For improved accuracy, a model
for deep learning segmentation was generated using manually seg-
mented training data from the same image data set analyzed in this
study. Images of 18 tissue samples were acquired which were derived
from various healthy organs and tumors fromdifferentmousemodels.
Image regions, with on average 305 cells per image, were manually
selected to capture the wide range of variation in cellular appearance.
The images were down-sampled from 2048 × 2048 to 512 × 512 for
accommodating the receptive field of StarDist. Manual annotations
were performedusingQuPath v0.3.x by eight volunteermicroscopists,
who were assigned one image from each of the 18 tissue samples. The
results in geojson annotation files were converted to label maps
whereby overlaps were resolved by generating a distancemap for each
cell and assigning pixels to a cell only when its value in the distance
map was greater than for all other cells. This resulted in a manually
annotated dataset of 144 images. This dataset was augmented by
adding publicly available datasets including BBBC020, BBBC038v1,
and BBBC039v1 from the Broad Bioimage Benchmark Collection48–50.
For BBBC038v1 we used the fluorescence images of “stage1 train” only,
from the unofficial fixes by Konstantin Lopuhin (https://github.com/
lopuhin/kaggle-dsbowl-2018-dataset-fixes). We also used the images
from Coelho et al., which consists of hand-segmented nuclear images
of 3T3 and U20S cells51.

A probability score was generated for each nucleus predicted by
StarDist to indicate nuclear segmentation confidence, and used for
quality control checks. Each nucleus was expanded by 2.5 µm to
approximate the surrounding cytoplasm. The expansion was con-
strained by the size of the detected nuclei, so that a cell was not larger
than 1.5 times the size of its nucleus. This produced fourmeasurement
zones per object; nucleus only, cytoplasm only, whole cell, and cell
membrane. The following measurements were taken for every single-
cell object: X-Y object centroid coordinates of each nucleus, area,
perimeter, and circularity of each nucleus and cell, distance of each
object centroid to the nearest regional annotation border, and dis-
tance of each object centroid to the nearest neighbor object of an
alternate cell type. For subsequent analyses, either the nuclear MFI or
the cell MFI were used, depending on the expression of the marker
(Supplementary Table 2).

Semi-supervised annotation was performed using FlowSOM, a
tool that leverages self-organizing maps to interpret multiplexed flow
cytometry data35. Self-organizing maps are artificial neural networks

Fig. 6 | Differential Reorganization Response to IR Between Brain Tumor
Models. Cellular composition column-scaled heatmaps of cell neighborhood (CN)
analysis for (a) PDGfp and (b) BrM tumors. Percent total CNs across each treatment
for (c) PDGfp and (d) BrM. Box-plots for c-d show percent totals for each image
(PDGfp Untreated n = 19 images, 7 days post-IR n = 17 images, Regrowth n = 18
images, BrM n = 9 images for each treatment). p values were calculated using two-
way ANOVA test. p values for c (from left to right): <0.0001, <0.0001, <0.0001,
<0.0001, <0.0001, <0.0001, <0.0001, <0.0001, 0.0005, <0.0001, 0.0008, 0.0165,
<0.0001, <0.0001, <0.0001, 0.0077, 0.0026, <0.0001, <0.0001, 0.008, <0.0001,
<0.0001, 0.0116, 0.0003, <0.0001, <0.0001, <0.0001. p values for d (from left to

right): 0.0013, 0.0014, 0.0003, 0.0008, 0.0122, 0.0471, 0.0006, 0.0079, 0.0003,
0.0027, 0.0004, 0.0052. e Representative positional plots for three untreated and
three 7 days post-IR samples highlighting CNs 2, 5, and 14. f–h Representative
images from7days post-IR samples showingHIFI (left) anddigital pathology (right)
images of CN2, CN5, and CN14 respectively. Scale bars = 40 µm. Heatmaps of cel-
lular colocalization calculated as the sum of two one-tailed permutation test p
values (sum_sigval) for (i) untreated samples and (j) 7 days post-IR samples. Green
boxes indicate significant colocalization and anticorrelation for Tumor_A cells, for
example. Source data are provided as a Source data file.
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that perform unsupervised dimensionality reduction while maintain-
ing the topological structure. We analyzed the two PDGfp batches and
all BrM tumors separately, by building a self-organizing map with
10 × 10 grid dimensions, for a total of 100 nodes. Input data was the
mean MFI intensity of marker proteins (nuclear or whole-cell accord-
ing to thebiology) scaled to a0-1 range,with the highest values clipped
to the 99.7th percentile. The assignment of nodes to clusters was gui-
ded by: (i) the automatic optimizedmetaclustering by flowSOMon the
minimal spanning tree, (ii) the heatmap of mean MFI intensities for
marker proteins in each node, (iii) themapping of node annotations to
QuPath objects and visual inspection of marker intensities. The
annotation of clusters was defined across batches and mouse models
based on the heatmap of the expression of marker proteins in clusters
and visual inspection of cluster annotations inQuPath (Supplementary
Fig. 4a–c).

Machine learning object annotation
Regional tissue annotation was performed in QuPath32 (version 0.4.4).
Binary classifiers were generated to create ROIs for the entire lesion,
vessels, areas of ECM, and tumor versus surrounding parenchyma. All
classifiers used artificial neural network (ANN) machine learning, and
were trained off of 25% of image data. Twoderivative annotations were
created viamodifications of the above ROIs; the tumorborder, and the
perivascular niche. The lesion classifier was trained using all available
channels, holes and fragments less than 20,000 pixels were removed
from ROIs, and the region was expanded 750 µm into the parenchyma
to capture adjacent brain tissue. Manual removal of tissue deforma-
tions resulting from tissue sectioning or misalignment was performed
on all lesion ROIs. Vessel classifiers were trained using only CD31, VE-
cadherin, and CD13 channels, holes and fragments less than 20 pixels
were removed. Vessel ROIs were expanded by 15 µm to create peri-
vascular annotations. The tumor versus brain classifier used for PDGfp
samples was created using the DAPI, GFP, Sox9, Sox2, Olig2, NeuN, NF-
H, CSPG5, WGA, and Lamin AC channels. The tumor versus brain
classifier used for BrM samples was created using DAPI, E-cadherin,
EpCAM, CK14, CK8, NeuN, and NF-H. Holes and fragments less than
4000 pixels were removed. The intersection between the tumor and
brain was expanded by 70 µm to create the tumor border annotation.
The ECM classifier was trained using the Col I, Col IV, CD13, WGA,
CSPG5, Laminin, ERTR7, and Fibronectin channels. Holes less than 50
and fragments less than 300 pixels were removed from ROIs.

Spatial analysis
Cell neighborhood and interaction analysis were performed in R with
RStudio using the imcRtools39 package version 1.0.2, and nearest
neighbor distance network analysis used the igraph52 package. HIFI
image measurements were repackaged into SingleCellExperiment
objects for analysis. An expansion radius of 30 µm was used to gen-
erate a spatial connectivity map of each image, connectivity maps for
all images were pooled together and clustered to identify 15 distinct
cell neighborhoods. Cell object identifiers were reassigned with their
respective cluster number and quantified for each image and treat-
ment type. Interaction analysis was performed using the ‘classical’
method, randomly reassigning each cell type with 1000 iterations to
create a null distribution pattern for the statistical comparison of sig-
nificant cellular interactions.

Mean nearest neighbor distance measurements for each treat-
ment typewere compiled into distancematrices ofmean and standard
deviation, and distancenetworkswere generatedwith igraph using the
Fruchterman–Reingold layout algorithm to set edge lengths as pro-
portional to the mean distance between two cell types. Edge widths
were modified based on the standard deviation of the mean, such that
edge width was the inverse of variability (1/SD). This was then multi-
plied by a constant esthetic value (100) for visualization of edge width
heterogeneity. Edge widths below a threshold were removed from

each network. The edge width threshold was determined as the med-
ian standard deviation of a network multiplied by an experientially
predetermined network heterogeneity cofactor constant (0.8) so that
the network represents inherent heterogeneity while being compar-
able to other networks in the experiment. Node size for each cell type
was based on binned percent-total populations, so that cell type from
<1% to >25% of the total population corresponded to node sizes
between 3 and 70 respectively. Network plots were then clustered
(gray outlines) using Louvain clustering with a resolution of 1.5 to
determine cell type nodes with similar distance patterns.

Statistics and reproducibility
All relevant experiments and analyses had a minimum of 3 indepen-
dent repetitions, and each dataset presented in the study had at least 3
technical replicates included. Statistical analyses and Shannon Diver-
sity Index scores were performed in R with RStudio, or in GraphPad
Prism (GraphPad9.0 software). Two-wayANOVA testswereused for all
between-group comparisons, with the level of significance defined as
P <0.05. Figure asterisks correlate to P-value thresholds: ns > 0.05,
*≤0.05, **≤0.01, ***≤ 0.001, ****≤0.0001.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The StarDist cell segmentation model and associated training data are
available from the GitHub repository of the iMAXT consortium:
https://github.com/TristanWhitmarsh/IMAXT_StarDist_Cellpose. All
other data are available from the following Zenodo repository, DOI:
10.5281/zenodo.10778429. The file sizes of primary HIFI image data
exceed hosting capacity, and so are available upon request. All
remaining data can be found in the Article, Supplementary and Source
data files. Source data are provided with this paper.

Code availability
The HIFI Alignment Tool is available from the GitHub repository of the
Jean Hausser lab: https://github.com/jhausserlab/HiFiAlignmentTool.
All other code is available from the following Zenodo repository,
https://doi.org/10.5281/zenodo.10778429.
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